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Hospital-acquired bloodstream infections have a definite impact on patient encounters and cause increased length
of stay, costs, and mortality. However, methods for estimating these effects are potentially biased, especially if the
time of infection is not incorporated into the estimation strategy. We focused onmatching patient encounters in which
a hospital-acquired infection occurred to comparable encounters in which an infection did not occur. This matching
strategy is susceptible to a selection bias because inpatients that stay longer in the hospital are more likely to
acquire an infection and thus also are more likely to have longer and more costly stays. Instead, we have pro-
posed risk-set matching, which matches infected encounters to similar encounters still at risk for infection at the
corresponding time of infection. Matching on the one-dimensional propensity score can create comparable pairs
for a large number of characteristics; an analogous propensity score is described for risk-set matching. We have
presented dramatically different estimates using these 2 approaches with data from a pediatric cohort from the
Premier Healthcare Database, United States, 2009–2016. The results suggest that estimates that did not incor-
porate time of infection exaggerated the impact of hospital-acquired infections with regard to attributed length of
stay and costs.

bloodstream infections; hospital-acquired infections; matching; propensity score

Abbreviation: CI, confidence interval; HAI, hospital-acquired infections.

Hospital-acquired infections (HAI), particularly bloodstream
infections, are expensive and potentially life-threatening events.
Various published estimates show that HAI lead to longer hos-
pital stays, more expensive visits, and higher mortality. Much
of this work has compared patient encounters in which HAI
occurredwith encounters without HAI, typically either matched
on clinical and demographic characteristics or regression
adjusted in order to ensure patients are comparable (1–4). If
the number of characteristics on which to match is large,
finding exact or even close matches is difficult, but tools
like propensity scores are useful for reducing the dimension
of the matching problem (5, 6).

However, a limitation of many of these studies is they do not
account for the time during the hospitalization at which the
HAI occurred. This shortcoming occurs because detailed
information on time of HAI is often unavailable in large data-
bases of inpatient encounters (i.e., claims data). Failure to
account for time of infection might lead to a selection bias

because inpatients that stay longer in the hospital are more
likely to acquire HAI and thus also are more likely to have lon-
ger and more costly stays. The aforementioned matching
methods that attempt to control for the severity of a patient’s
condition cannot completely remove this bias.

If information on the time of infection is known, then a rea-
sonable methodological variation is tomatch a patient who ex-
periences a HAI event to comparable inpatients still at risk of
infection at the time of that infection. This approach is called
risk-set matching and effectively minimizes the selection bias
(7). Additionally, this approach has an analogous propen-
sity score that can produce well-matched cohorts for a large
number of potential confounders, as well as time-varying factors
(8). For this application of risk-set matching, the propensity score
is estimated via Cox proportional hazards regression on the time
to infection.

The purposes of this work were to: 1) highlight the severity
of the selection bias that can occur when time of infection is
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left unaccounted for, and 2) to demonstrate risk-set matching
as a tool to produce a well-designed study to assess the impact
attributable to HAI.

METHODS

Data source and variables of interest

Data for this study come from the Premier Healthcare Data-
base, which represents approximately 20%of annual discharges
in the United States and includes over 6 million hospital dis-
charges per year from more than 750 hospitals (9). This service-
level, all-payer, administrative database contains detailed infor-
mation on patients’ demographics, diagnoses, treatments, and costs
as well as hospital characteristics related to their inpatient stays.
All data in the Premier Healthcare Database are statistically de-
identified and compliant with the Health Insurance Portability
and Accountability Act (HIPAA). This study was determined to
be exempt from review by the institutional review board at Chil-
dren’s Hospitals andClinics ofMinnesota.

For this study, the specific population of interest was pediatric
(aged less than 19 years) inpatient encounters from 2009 to 2016.
Neonates were excluded from the analysis because of the diffi-
culty in clearly defining HAI for this high-risk population. Only
encounters with a length of stay over 2 days were included, in
order to ensure all patient encounters were at risk of HAI. The
study was limited to 160 hospitals that reported data from their
microbiology labs during the study period. Of particular interest
for this study was data on blood cultures, the gold standard for
diagnosing bloodstream infections.

Several potential confounding factors are related to both risk
of HAI and the outcomes of interest. The potential confounding
variables included patient demographics (i.e., age, sex, race, and
insurance type), provider characteristics, clinical description of
the patient, geographic region (i.e., 9 census divisions), and year
of encounter. Descriptions of the providers included whether
they were pediatric specialists as well as information on the hos-
pital size (i.e., number of beds), location (urban or rural), and
teaching status. Clinical characteristics included a descrip-
tion of the primary diagnosis (classified into 25 Major Diag-
nostic Categories provided by the Center for Medicaid and
Medicare Services), presence of a pediatric complex chronic
disease (as previously defined by Feudtner et al. (10)), and
treatments known to be associated with infections. Treatments
of interest for this analysis included whether the patient was in
the intensive care unit or had a central line and/or catheter in
place. These features were identified as treatments present or
occurring on admission based on charge codes and/or Interna-
tional Classification of Diseases (Ninth or Tenth Revision, as
applicable) procedure codes recorded within the first 2 days of
admission. Treatments were limited to the first 2 days of the
encounter because they could be determined to have occurred
prior to any potential HAI, and not after (or as a result of) the
infection.

From the microbiology data, a laboratory-confirmed blood-
stream infection was identified via a positive blood culture with
the isolate being a known organism and not a common commen-
sal according to the list published by the Centers for Disease
Control and Prevention’s National Healthcare Safety Network
(11, 12). For this study, to be considered a HAI event, the first

positive blood culture had to be drawn on day 3 or later of the
hospital admission without the patient having a primary diag-
nosis of an infectious disease present on admission. This defi-
nition differs from the National Healthcare Safety Network’s
definition, which includes some diagnoses that do not require
a positive blood culture. Time of infection was defined as the
day the first positive blood culture was drawn. This definition
might overestimate the time of infection, which naturally had
to have occurred before the blood draw.

The outcomes of interest for this study were length of stay,
cost, and mortality. Total costs for the hospitalization included
all costs recorded by the hospital during the inpatient encoun-
ter (e.g., room and board, pharmacy, laboratory, etc). All costs
were inflation adjusted to (December) 2016 US dollars using
the US Department of Labor Consumer Price Index (13) and
Winsorized at the 0.1 and 99.9 percentiles; encounters with $0
costs were excluded. Mortality was determined from discharge
status classified as expired or discharged to hospice.

Conventional matching with propensity scores

Amatched cohort of patients with and without HAI was con-
structed based on propensity scores. The propensity score was
estimated with a logistic regression model that had HAI status
as the dependent variable and potential confounding factors as
the independent variables (14). We emphasize that the propen-
sity score model does not incorporate the time of infection; it
models only the occurrence of HAI. Moreover, all confounding
variables are based on information available at time of admis-
sion (or within the first 2 days), and these variables do not
change over time.

In total, the propensity score model included over 70 inde-
pendent variables. The theory of propensity scores shows that if
a HAI patient and non-HAI patient have the same value of the
propensity score, then these 2 patients are comparable, on aver-
age, with respect to the variables in the propensity score. Thus,
instead of trying to match on over 70 variables at the same time,
the matching problem is reduced tomatching on only 1 variable
(or dimension): the propensity score. Patient encounters with
HAI were matched to 3 encounters without HAI based on
nearest-neighbor matching on the propensity score (on the
log odds scale).We refer to patientsmatched on the logistic pro-
pensity score as the “conventionally matched cohort,” because
it stems from standard applications of matched designs.

Risk-set matching with propensity scores

For risk-set matching, a patient experiencing a HAI event
on a specific day is matched to similar patients who have not
experienced HAI up to that point in their hospital admission.
The idea, as the name suggests, is to match HAI patients to
comparable patients still at risk of HAI. Multivariate matching
on a large number of confounding factors is even more difficult
in this setting because the set at risk of HAI continually decreases
(i.e., as patients are discharged). However, analogous propensity
score methods effectively reduce the dimension of the matching
variable to one.

For risk-set matching, the propensity score is the hazard of
HAI occurring as a function of all confounding variables. Heu-
ristically, just as the propensity score is the probability of HAI,
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the propensity score for risk-set matching is the instantaneous
probability of HAI given that a patient is at risk. Extending the
analogy, just as logistic regression is one tool for modeling the
propensity score, the risk-set propensity score can be estimated
using standard survival analyses, namely Cox proportional ha-
zards regression (15). Under certain assumptions, using the
modeled hazard has similar balancing properties as the propen-
sity scores. A rigorous treatment of this theory is beyond the
scope of this work; however, see Lu (8) for theoretical details.

The risk-set propensity score is estimated with a Cox regres-
sion with the survival outcome of either HAI (i.e., an event)
occurring and its corresponding time or HAI not occurring (i.e.,
a censored event) and the length of stay in the hospital (i.e., cen-
soring time). The same independent variables used in the logis-
tic regression propensity score model were included in the
proportional hazards model, with the exception of treatments on
admission. Instead, these variables were allowed to vary
over the duration the patient was at risk during their hospital
admission. Stay in an intensive care unit could be determined
for every day of the encounter, however; the presence of a cath-
eter or central line could be determined only from procedure or
billing codes on the day of the procedure. As such, a patient
who had a catheter or central line procedure code was assumed
to have this in place for the remainder of the hospital stay.

The estimated risk-set propensity score is the linear predic-
tion from the Cox regression model, which, when exponen-
tiated, is proportional to the hazard. Each HAI event and time
was matched to 3 patient encounters that were still at risk of
HAI at the time of infection based on nearest-neighbor match-
ing. We refer to patients matched on the risk-set propensity
score as the “risk-set matched cohort.”

A subtlety of risk-set matching is that a patient can be at
risk at one point in their hospital stay, and thus matched to a
HAI event, but eventually go on to experience a HAI event
later in their stay. That is, an encounter could contribute as
both an uninfected and infected patient.

Statistical analysis

The balance of the matched pairs design was assessed by
comparing the distribution of a potential confounder between
the patient with a HAI event and (matched) patients without a
HAI event. A plot of the standardized difference in percentage
for each covariate was used to assess of the degree of imbal-
ance between the HAI cohort and non-HAI cohorts (16, 17).
For variable x, the standardized difference is defined as:

= × ¯ − ¯

( + )
( )

Percent standardized difference

100
x x

s s / 2

HAI no HAI match

HAI
2

no HAI
2

where x̄HAI and ¯ ( )xno HAI match are the sample means of the HAI
patients and matched non-HAI patients respectively and sHAI

2

and sno HAI
2 are the sample variances of the HAI and all non-HAI

patients. Values near zero suggest the distributions are well bal-
anced, whereas values far from zero suggest imbalance. The
magnitude of the standardized difference follows the inter-
pretation offered for Cohen’s d.

The outcomes of length of stay, costs, and mortality were
compared between HAI and non-HAI patients. Matched pairs
were analyzed using a paired t interval of the HAI patient’s out-
come and the average of the 3matched patients’ outcomes. Com-
parisons with all patients with no HAI are made for the sake of
comparison; 2 sample t intervals were used for these inferences.
In addition, a sensitivity analysis was performed in which the
time of infection was defined as 2 days prior to the positive
blood culture in order to account for 48 hour incubation
period.

RESULTS

In total, 237,625 inpatient encounters from 160 hospitals were
included in the analysis, with 374 (0.16%) encounters experienc-
ing a laboratory-confirmed HAI. Web Figure 1 (available at
https://academic.oup.com/aje) plots the standardized differ-
ence comparing HAI and non-HAI patients for all covariates.
Beforematching, there was severe imbalance on several factors,
including whether the patient was in the intensive care unit or
had a central line. After 3:1 conventional matching on the (logis-
tic) propensity score, the balance was improved considerably.
Risk-set matching also improved the balance relative to the
no-HAI sample, but not as well as conventional matching. For
example, patients in the HAI group were more likely to have
hematologic conditions than were their risk-set matched coun-
terparts (18% versus 8%), but these groups were similar in the
conventional matched cohort (18% versus 18%).

Table 1 summarizes the distribution of time-varying factors
for the different cohorts. Among the encounters with no HAI,
only 34% were even at risk when averaging over the times of
infection. Conventional matching increased the percentage at
risk but only to 46%. That is, 54% of these conventionally
matched patients had already been discharged by the time

Table 1. Percentages of Time-Varying Factors at the Time of Hospital-Acquired Infection Among Pediatric
Encounters at HospitalsWith Microbiology Data, Premier Healthcare Database, United States, 2009–2016

Variable HAI
(n = 374)

No HAIa

(n = 237,251)
Conventionally Matched

(n = 1,122)
Risk-Set Matched

(n = 1,122)

At risk of HAI 100 34 46 100

Central line in place during admission 32 2 12 24

Catheter in place during admission 9 3 4 15

In intensive care unit 35 4 14 27

Abbreviation: HAI, hospital-acquired infections.
a Percent of all pairwise comparisons of HAI and no-HAI encounters.
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their match pair got infected in the hospital. In contrast, the
risk-set matched cohort were all at risk by design. The time-
varying covariates were also better balanced after risk-set
matching than conventional matching. Of the matched en-
counters at risk of infection, 66 (5.9%) went on to incur
HAI, and these encounters contribute to both the HAI and
non-HAI groups.

Table 2 provides estimates of the impact of HAI on the out-
comes of interest. For those conventionally matched, the esti-
mated attributable length of stay was an additional 31 days on
average (95% confidence interval (CI): 23, 39). This estimate
is larger than the risk-set matched estimate of 12 additional
days (95% CI: 6, 18). A similar result was obtained for costs
to the hospital, with the conventional approach estimating
an additional $66,400 (95% CI: $56,600, $76,100) due to
HAI, whereas the risk-set matching estimated $31,900 (95%
CI: $23,300, $40,400) in additional costs. The estimates for
mortality are comparable, but the risk-set estimate suggests a
slightly larger effect.

Results were similar for the sensitivity analysis that defined
time of infection as 2 days prior to the first positive blood cul-
ture. For conventional matching, the additional length of stay
due to HAI was 33 days (95% CI: 25, 40), and the additional
costs were $60,000 (95% CI: $52,600, $67,400). These es-
timates were again much larger than estimates using risk-set
matching, with an average of 16 additional days (95% CI: 10,
22) and $35,100 in additional costs to the hospital (95% CI:
$28,900, $41,300) due to HAI.

DISCUSSION

The estimates of the impact attributable to HAI on length
of stay and costs were dramatically larger using conventional
matching compared with risk-set matching. Our explanation
for this difference is the selection bias that can occur because
longer encounters are more likely to incur HAI. The selection
bias is made apparent when considering that 54% of the con-
ventionally matched patients with no HAI were already dis-
charged by the time their matched counterpart was infected.
Risk-set matching reduces this selection bias by matching
patients who are at risk for HAI (i.e., still in the hospital) at
the time the infection occurred.

The selection bias due to HAI naturally occurring in longer
hospital stays has been documented in other studies (18, 19).
Most similar to our work is an analysis by Vrijens et al. (20),
which showed large differences in estimates that account for

the time of infection and those that do not. Even though the
matched patients were at risk of infection, the approach of Vri-
jens (and others (21, 22)) is not quite risk-set matching because
matched patients were confirmed to not have HAI. Recall, risk-
set matching includes all patients still at risk of infection as poten-
tial matches at a given time, not just those that go on to have no
infection. The reason for this approach is to match only on infor-
mation from the past or present with respect to the time of infec-
tion. Matching on future information like whether HAI occurs
can introduce bias analogous to the bias found in survival analy-
ses that compare groups based on response at the end of a trial
(23, 24).

As an example of how this bias can occur, consider finding
a match for patient C in Figure 1. Risk-set matching uses all
information up to day 5, when the infection occurred. Patient
A was discharged on day 3 and thus ineligible, but patients B
and D are both at risk and eligible matches. Excluding patient
D because she went on to incur an infection on day 16 would
bias the group at risk on day 5 to have favorable outcomes in
the sense that patient D had longer length of stay and died.
Moreover, patient D should also contribute to the HAI group
because to exclude patient D (i.e., after being matched to
patient B) would bias the HAI group to infections that
occurred earlier.

The reason to match on propensity scores—for both conven-
tional and risk-set strategies—is that it reduces the problem of

Table 2. Comparison of Outcomes Among Pediatric Encounters at HospitalsWithMicrobiology Data, Premier Healthcare Database, United
States, 2009–2016

Outcome HAI No HAI Conventionally Matched Risk-Set Matched

Average Average Differencea 95%CI Average Differencea 95%CI Average Differencea 95%CI

Length of stay, days 43.5 7.3 36.2 28.1, 44.3 12.8 30.7 22.7, 38.7 31.5 11.9 6.1, 17.8

Cost, $ (thousands) 103.8 13.5 90.3 79.8, 100.8 37.4 66.4 56.6, 76.1 71.9 31.9 23.3, 40.4

Died,% 9.4 0.3 9.1 6.1, 12.1 1.3 8.0 5.0, 11.0 2.4 7.0 3.9, 10.0

Abbreviations: CI, confidence interval; HAI, hospital-acquired infections.
a Difference calculated as HAI cohort minus non-HAI cohort.

0 5 10 15 20

A

B

C

D

Infection
Survived to Discharge
Died at Discharge

Length of Stay, days

Figure 1. Diagram demonstrating risk-set matching for patient C;
both patients B and D are eligible matches.
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matching on several variables down to only 1 variable. For exam-
ple, Vrijens et al. required exact matching on all potential con-
founders, which led to including only half of HAI cases.
This restriction on the sample size only to successfully matched
cases might bias results (4). In this study, we performed risk-set
matching on the propensity score, which was estimated via stan-
dard survival analysis techniques (i.e., Cox proportional hazards
regression) on the time to infection. The theory of Lu (8) suggests
that under certain assumptions the matched cohort is comparable
to the HAI cohort with respect to any observed variables used in
the propensity score model. Our results showed improvement in
balance relative to the no-HAI cohort and suggest that the risk-
set matched group was comparable to the HAI patients across
several covariates.

Modeling time to infection introduces additional complica-
tions to propensity-score estimation for risk-set matching. Our
model demonstrated how to incorporate time-varying co-
variates into the propensity score (25). This task is computa-
tionally more challenging than conventional propensity-
score estimation and matching because each encounter is
broken up into multiple disjoint time intervals over which
the covariates are constant. Another potential complication
is violations of the proportional hazards assumption, for
example, if associations with the outcome change over time
(26). Andersen et al. (27) offer an application of risk-set match-
ing in which the time to tracheal intubation is modeled with
time-varying coefficients.

Although risk-set matching improved balance of the base-
line covariates, conventional matching produced a cohort with
smaller (absolute) standardized differences. This better bal-
ance was because all patients without HAI were available to
match whereas the risk set of potential matches dwindles as in-
fections occur later in the stay. For example, the reservoir of
encounters without HAI was over 600 times the number of
HAI encounters. In contrast, 50% and 25% of HAI occurred,
respectively, after days 8 and 16, which corresponded to at-
risk reservoirs of only 217 and 138 times the number of re-
maining HAI encounters. Although these reservoir sizes are
quite large, matching on rare conditions is still challenging.
We view the additional imbalance of risk-set matching as inher-
ent to the problem of finding comparable patients still at risk of
infection as opposed to a disadvantage of themethod.

More complex matching or inferential techniques could
address additional imbalance from risk-set matching. Model-
ing outcome variables via mixed effects regressions or gen-
eralized estimating equations (to account for matched pairs)
could adjust for any remaining imbalances as well as exam-
ine potential effect modification. Additionally, more advanced
propensity-score matching algorithms would likely improve the
balance between the cohorts (e.g., (28) and (29)), although there
might be challenges to implementing them for risk-set match-
ing. For example, a multivariate distancemetric (i.e., Mahalano-
bis distance (30)) should change as the composition of the risk
set changes over time. In this study, we chose simple matching
and inferential techniques for clarity of exposition.

Both risk-set and conventional matching rely on observing
all potential confounders. Neither can adjust for unobserved
confounding. Sensitivity analysis can assess the impact of any
unobserved confounding and determine to what degree an
unobserved variable might explain the results (31). There is

a rich literature on these techniques for observational studies
as well as conventional matched-pair designs (32–34). See Li
et al. (7) for a sensitivity analysis specific to risk-set matching.

Conventional matching still has its place when there is
no clear equivalent of time to infection that is an obvious
confounding factor. However, that scenario is not the same
as when time of infection is unknown or undocumented,
which is often the case for studies of HAI using large databases.
With no information on the approximate time of infection, risk-
set matching cannot be implemented and conventional match-
ing is not recommended. Exploring how to proceed in the
absence of time to infection is an area for future research.

In conclusion, the results of this work suggest that studies
that do not take into account time of infection might overesti-
mate the impact of HAI on outcomes. Most research on the
impact of HAI does not incorporate time of infection (35), and
there is a need to both develop and implement statistical meth-
ods such as risk-set matching that do incorporate time of infec-
tion. Moreover, the implications of this work go beyond
infections. The selection bias shown here also applies to
other hospital-associated outcomes that are more likely to
occur in longer inpatient stays: for example, venous thrombo-
embolism, pressure ulcers, or falls (6, 36). A broad reassessment
of the impact of hospital-associated events might be in order.
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